Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials - Basic Principles and Applications
  Großes Bild
 
Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials - Basic Principles and Applications
von: Ali Rafiei Miandashti, Susil Baral, Eva Yazmin Santiago, Larousse Khosravi Khorashad, Alexander O. G
Springer-Verlag, 2018
ISBN: 9789811335914
96 Seiten, Download: 3751 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  1 Introduction 11  
     References 13  
  2 Theory of Photo-Thermal Effects for Plasmonic Nanocrystals and Assemblies 15  
     2.1 Introduction 15  
     2.2 Optical Properties of Single Nanoparticles and Nanoparticle Clusters 16  
        2.2.1 Mie Theory 17  
           2.2.1.1 Quasistatic Approximation 18  
        2.2.2 Effective Medium Theory 19  
        2.2.3 Effect of Geometry of the System 20  
        2.2.4 Effect of Nanoparticle Material and Its Surrounding Medium 22  
     2.3 Optically Generated Heat Effects 23  
        2.3.1 Single Spherical Nanoparticles 24  
           2.3.1.1 Phase Transformations 26  
        2.3.2 Ensemble of Nanoparticles 27  
        2.3.3 Thermal Complexes with Hot Spots 28  
     References 32  
  3 Nanoscale Temperature Measurement Under Optical Illumination Using AlGaN:Er3+ Photoluminescence Nanothermometry 33  
     3.1 Introduction 33  
     3.2 AlGaN:Er3+ Photoluminescence Nanothermometry 33  
     3.3 Experimental Details of AlGaN:Er3+ Photoluminescence Nanothermometry 35  
     References 39  
  4 Comparison of Nucleation Behavior of Surrounding Water Under Optical Excitation of Single Gold Nanostructure and Colloidal Solution 41  
     4.1 Introduction 41  
     4.2 Temperature Changes and Phase Transformation with Gold Nano-wrenches 41  
     4.3 Dynamic Temperature Changes and Phase Transformation with Gold Nano-wrenches 42  
     4.4 Temperature Measurements of Optically Excited Colloidal Gold Nanoparticles 45  
     4.5 Temperature Measurements Probing Convection of the Liquid During Laser Excitation of a Colloidal Nanoparticle Solution 45  
     References 48  
  5 Effect of Ions and Ionic Strength on Surface Plasmon Extinction Properties of Single Plasmonic Nanostructures 49  
     5.1 Introduction 49  
     5.2 Measurement of Nanoscale Temperature Change on Optically Excited Gold Nanowires Using AlGaN:Er3+ Nanothermometry 50  
     5.3 Dynamic Temperature Measurements on Single Gold Nanowire Using Flow Cell 52  
     5.4 Model of Heat Transfer 52  
     5.5 Absorption Measurements on Gold Nanoparticle(s)/ Gold Nanorod(s) 53  
     5.6 Absorption and Temperature Measurements on a Same Gold Nanoparticle(s) 55  
     5.7 Single Nanowire Dark-Field Scattering Measurements 56  
     5.8 Single Nanoparticle(s) Emission Measurements 57  
     5.9 Calculation of Absorption Cross Section of a Nanowire 57  
     5.10 Langmuir Model of Charge Occupancy and Effect on Absorption Attenuation 59  
     References 59  
  6 Photothermal Heating Study Using Er2O3 Photoluminescence Nanothermometry 61  
     6.1 Introduction 61  
     6.2 Temperature Calibration of Erbium Oxide Photoluminescence 62  
     6.3 Temperature Profile of Single Gold Nanodot 64  
     6.4 Temperature Measurement Inside a Microbubble 68  
     6.5 Drawbacks/Limitations of the Technique 69  
     References 70  
  7 Nanoscale Temperature Study of Plasmonic Nanoparticles Using NaYF4:Yb3+:Er3+ Upconverting Nanoparticles 72  
     7.1 Introduction 72  
     7.2 Temperature Calibration of NaYF4:Yb3+,Er3+ Nanocrystals Photoluminescence 72  
     7.3 Characterization of NaYF4:Yb3+,Er3+ Nanocrystals 74  
     7.4 Lifetime Study of NaYF4:Yb3+,Er3+ Nanocrystals 76  
     References 80  
  8 Near Field Nanoscale Temperature Measurement Using AlGaN:Er3+?Film via Photoluminescence Nanothermometry 82  
     8.1 Introduction 82  
     8.2 Characterization of NSOM Tip and Nanoparticles 83  
     8.3 Sub Diffraction Near Field Photothermal Temperature Measurement 84  
     8.4 Steady State Near Field Photothermal Heat Study 88  
        8.4.1 Estimation of Cluster Radius (Rc) from Thermal Profile 89  
     8.5 Comparison Between Estimation of Cluster Radius (Rc) from Thermal Profile, AFM, and Changes on Er3+ Luminescence Intensity 90  
     8.6 Two Laser Steady State Data Collection Experiment 91  
     8.7 Scaling Law in Near Field Photothermal Heat Dissipation 92  
     References 95  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz